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Abstract

The first year of life is typically the most critical to a pinniped’s survival, especially for Arctic

phocids which are weaned at only a few weeks of age and left to locate and capture prey on

their own. Their seasonal movements and habitat selection are therefore important factors

in their survival. During a cooperative effort between scientists and subsistence hunters in

October 2004, 2005, and 2006, 13 female and 13 male young (i.e., age <2) bearded seals

(Erignathus barbatus) were tagged with satellite-linked dive recorders (SDRs) in Kotzebue

Sound, Alaska. Shortly after being released, most seals moved south with the advancing

sea-ice through the Bering Strait and into the Bering Sea where they spent the winter and

early spring. The SDRs of 17 (8 female and 9 male) seals provided frequent high-quality

positions in the Bering Sea; their data were used in our analysis. To investigate habitat

selection, we simulated 20 tracks per seal by randomly selecting from the pooled distribu-

tions of the absolute bearings and swim speeds of the tagged seals. For each point in the

observed and simulated tracks, we obtained the depth, sea-ice concentration, and the dis-

tances to sea-ice, open water, the shelf break and coastline. Using logistic regression with a

stepwise model selection procedure, we compared the simulated tracks to those of the

tagged seals and obtained a model for describing habitat selection. The regression coeffi-

cients indicated that the bearded seals in our study selected locations near the ice edge. In

contrast, aerial surveys of the bearded seal population, predominantly composed of adults,

indicated higher abundances in areas farther north and in heavier pack ice. We hypothesize

that this discrepancy is the result of behavioral differences related to age. Ice concentration

was also shown to be a statistically significant variable in our model. All else being equal,

areas of higher ice concentration are selected for up to about 80%. The effects of sex and

bathymetry were not statistically significant. The close association of young bearded seals

to the ice edge in the Bering Sea is important given the likely effects of climate warming on

the extent of sea-ice and subsequent changes in ice edge habitat.
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Introduction

Bearded seals (Erignathus barbatus) are a key ecological component of Arctic and sub-Arctic

marine ecosystems, yet few details of their ecology have been documented in the scientific lit-

erature. Subsistence hunters residing in indigenous coastal communities have, for millennia,

harvested this large seal for nutritional and cultural needs. While the traditional knowledge

about bearded seals accumulated through generations of reliance on this resource is quite

detailed for times and areas where seals are harvested, it is incomplete for other times of year

and areas far offshore. Compared to most other pinnipeds, bearded seals are particularly diffi-

cult to approach, capture and handle for scientific purposes, especially in locations where they

are regularly hunted. Recent collaborative efforts between researchers and Alaska Natives,

however, have led to the development of effective capture and handling techniques for young

bearded seals. As a result, the opportunities for ecological study, and the employment of

advanced monitoring technologies such as satellite telemetry, have been greatly improved [1–

3]. Bearded seals inhabit shallow, seasonally ice-covered waters. These seals generally occupy

ice habitat that is broken and drifting, with natural areas of open water such as leads, fractures,

and polynyas, which the seals use for breathing and for access to water for foraging [4–7]. Sea-

ice is important to bearded seals throughout the year as a platform for resting and perhaps

thermoregulation [8]. It likely also provides some protection from marine predators [9], and

allows molting seals a dry location to raise their skin temperature and facilitate epidermal

growth [10]. Bearded seals usually avoid areas of shorefast ice that is thick and continuous and

they are also rarely seen in the vicinity of drifting ice that is heavy and unbroken or in large

areas of multi-year ice [5, 6, 11–15]. Although they are known to include schooling pelagic

fishes in their diet when advantageous [16, 17], bearded seals feed primarily on benthic organ-

isms that are more numerous in shallow water where light can reach the seafloor [12, 18]. As

such, their effective range is typically restricted to areas where seasonal sea-ice occurs over rel-

atively shallow waters [4–7, 11, 19–21].

The shallow shelf of the Bering and Chukchi seas provide the largest continuous area of

favorable foraging habitat for bearded seals [5, 11, 22]. These continental shelves are typically

covered by sea-ice in late winter and spring and are mostly ice free in late summer and fall, a

pattern that is believed to drive seasonal movements and distribution of bearded seals in this

area [7, 11, 22]. During winter, the favorable conditions of shallow waters combined with bro-

ken, drifting and fractured pack ice occur more often in the Bering Sea than the Chukchi Sea

[11]. These conditions may be the reason that the central and northern parts of the Bering Sea

shelf have the highest densities of bearded seals in winter [4, 5, 11, 23–25]. As the ice retreats

in the spring, most adults in the Bering Sea are thought to move north through the Bering

Strait. There they spend the summer and early fall at the southern edge of the Chukchi and

Beaufort Sea pack ice and at the wide, fragmented margin of multi-year ice [4, 5, 7, 11, 23, 25].

A smaller number of bearded seals, mostly juveniles, remain near the coasts of the Bering and

Chukchi seas during summer and early fall instead of moving with the ice edge and are often

found in bays, estuaries and river mouths [4, 11, 22]. As the ice forms again in the fall and win-

ter, most bearded seals are thought to move south again with the advancing ice through Bering

Strait returning to the Bering Sea where they spend the winter [7].

For pinnipeds, the first year of life is typically the most critical to long-term survival. This is

especially true for Arctic phocids like the bearded seal that are abruptly weaned at only a few

weeks of age and must learn to locate and capture prey on their own before blubber stores

accumulated during nursing are depleted [1–3]. About 40% of bearded seal pups survive to age

1, and only 28% live to age 3 [7]. Proficiency at feeding, and therefore habitat selection and
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seasonal movements, are important to their survival, and a better understanding of these fac-

tors is critical for developing sound conservation and management plans.

This study was motivated by the importance of bearded seals to the Arctic marine ecosys-

tem, including its human inhabitants; potential impacts of oil and gas development and other

human activities on bearded seal habitat; concerns about bearded seals’ habitat in a disrupted,

warming climate; and the need for better information to support decisions about this protected

species. These are some of the same concerns that led to a review of the bearded seals’ conser-

vation status [26] and listing of the species as “threatened” in U.S. waters, under the Endan-

gered Species Act (ESA) [27]. In this paper, our goals are to describe the seasonal movements

of young bearded seals in Alaska as determined from satellite-linked dive recorders (Fig 1) and

to identify important components of their habitat selection.

Materials and methods

We used satellite telemetry to record locations of young bearded seals in the Bering Sea. We

analyzed the seals’ locations with a movement model, used the results to simulate animal loca-

tions from a ‘null’ movement model, and then used logistic regression as a resource selection

function (RSF) [28] to compare habitat variables for observed animal locations to those for

simulated locations. All statistical analyses were performed using R [29]. Below we provide

specific details on each step of our analysis.

Data collection and study region

Kotzebue Sound (Fig 2A), an embayment of the southeastern Chukchi Sea, was selected as the

tagging location for this study. The Native Village of Kotzebue is one of many communities

along the coast of Alaska where bearded seals remain important for subsistence purposes. The

hunters there are aware that young-of-the-year bearded seals occupy areas near that coast well

into the fall [30], and the community has a history of supporting and participating in research

on species important to the region.

Fig 1. Young-of-year bearded seal released into Kotzebue Sound, AK, with a SPLASH satellite-linked dive

recorder (SDR) attached to its back.

https://doi.org/10.1371/journal.pone.0192743.g001
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During September-October of 2004–2006, researchers and Alaska Native hunters captured,

instrumented and released 26 (13 female and 13 male) young bearded seals with satellite-

linked dive recorders (SDRs) in Kotzebue Sound, Alaska (Table 1). There is considerable

uncertainty associated with the field classification of age in young bearded seals. Yet, based on

their standard lengths [31] and the frequent presence of a characteristic “T” shaped hair color-

ation on their forehead, all captured seals were thought to be less than 2 years old, with most

being young-of-the-year animals (i.e., approximately 6 months old). Seals were captured using

specially designed large-mesh (12 inch stretched) nylon twine nets. A net was composed of 1

to 3 panels, each 90 ft. long and 12 ft. or 24 ft. deep. The float line was made of a inch dia.

Fig 2. Maps a) of the Chukchi and Bering Sea Shelf region; and of the reported locations of bearded seals tagged in Kotzebue Sound in autumn: b) 2004-females, c)

2005-females d) 2005-males, e) 2006-females, f) 2006-males. The gray polygon indicates water depths< 1000 m.

https://doi.org/10.1371/journal.pone.0192743.g002
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foam core wrapped in nylon and the leaded line at the bottom of the net was ¼ inch diameter;

this lightweight lead line ensured that entangled seals could reach the surface to breathe. The

nets were set perpendicular to the coastline in shallow, ice-free waters where young bearded

seals were known to travel and feed prior to freeze-up.

Entangled seals were removed from the net and placed in hoop nets on the deck of a boat

or on the beach until they were processed. Captured seals were measured, and samples of their

blood (< 40 ml), skin and blubber (approximately 500 mg total), were collected to establish

baseline parameters for health and condition and for DNA studies. Seals were instrumented

with one of two SDRs: a SPLASH tag (manufactured by Wildlife Computers, Redmond, WA,

USA) or a CTD tag (manufactured by SMRU, St. Andrews, Fife, Scotland). The SDRs were

attached to the hair on the seals’ backs using Devcon quick-setting epoxy (Fig 1) and were

expected to fall off during the seals’ annual molt the following spring, after providing informa-

tion for up to 8 months. The SDRs collected information on the timing and depth of seals’

dives and their haul-out timing. Locations of the tagged seals were determined by the Argos

Data Collection and Location System (http://www.argos-system.org/ operated by CLS [32]),

Table 1. Information on the 26 seals (and their SDRs) in this study.

SDR-ID SDR-

type

Sex Standard

length (cm)

Axillary /

maximum girth

(cm)

Date

captured

Date entered

Bering Sea�
Date of last

SDR location

Duration

(days) of SDR

record

Days with

SDR

location

Location days

in Bering Sea�
Used in

habitat

analysis

53604 SPLASH F 5-Oct-04 n/a 1-Feb-05 120 90 0

53605 SPLASH F 11-Oct-04 n/a 2-Dec-04 53 49 0

53606 SPLASH M 148 113 / 123 24-Sep-05 10-Nov-05 1-Apr-06 190 157 141 X

53607 SPLASH F 141 97 / 110 24-Sep-05 16-Nov-05 8-Feb-06 138 105 84 X

53609 SPLASH M 140 123 / 122 26-Sep-05 n/a 5-Jun-06 253 149 0

53608 SPLASH M 142 30-Sep-05 9-Nov-05 26-Nov-05 58 55 18 X

53610 SPLASH M 166 1-Oct-05 21-Dec-05 30-Apr-06 212 176 109 X

53611 SPLASH M 141 2-Oct-05 2-Dec-05 15-Jan-06 106 84 33 X

59971 SPLASH F 143 115 / 2-Oct-05 2-Dec-05 27-Dec-05 87 81 24 X

59970 SPLASH M 129 3-Oct-05 n/a 20-Apr-06 200 170 0

59972 SPLASH F 149 110 / 115 4-Oct-05 9-Nov-05 30-Mar-06 178 176 141 X

59968 SPLASH F 135 7-Oct-05 27-Oct-05 4-May-06 210 168 148 X

59969 SPLASH M 145 121 / 125 7-Oct-05 22-Oct-05 19-Nov-05 44 39 25 X

59973 SPLASH F 134 7-Oct-05 n/a 7-Jan-06 93 77 0

59974 SPLASH F 140 96 / 106 7-Oct-05 7-Nov-05 22-Feb-06 139 95 67 X

59976 SPLASH M 157 129 / 131 7-Oct-05 20-Oct-05 2-Feb-06 119 82 66 X

59967 SPLASH F 126 11-Oct-05 n/a 15-Oct-05 5 5 0

58069 SPLASH F 150 113 / 124 3-Oct-06 21-Nov-06 26-May-07 236 216 172 X

70413 CTD M 138 102 / 118 6-Oct-06 n/a 9-Oct-06 4 2 0

58059 SPLASH M 134 102 / 114 7-Oct-06 11-Nov-06 4-May-07 210 190 162 X

70414 CTD M 136 108 / 114 7-Oct-06 n/a 12-Oct-06 5 5 0

70415 CTD F 139 108 / 120 7-Oct-06 n/a 26-Oct-06 19 14 0

70416 CTD F 144 118 / 138 7-Oct-06 8-Nov-06 18-Dec-06 73 57 28 X

70417 CTD M 151 120 / 133 7-Oct-06 7-Dec-06 31-Dec-06 86 62 22 X

58060 SPLASH F 137 116 / 128 20-Oct-06 12-Nov-06 18-Jan-07 91 88 68 X

65914 SPLASH M 148 100 / 109 22-Oct-06 6-Nov-06 22-Dec-06 62 60 46 X

� We defined the northern boundary of the Bering Sea as latitude N 65˚ 45’. Some seals crossed this boundary more than once. As such, the date of entering the Bering

Sea was defined as the last date a seal crossed south of N 65˚ 45’ before its SDR ceased transmitting (e.g., the battery failed or the seal molted).

https://doi.org/10.1371/journal.pone.0192743.t001
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which also relayed dive and behavior data that were recorded by the tags. These data were pro-

cessed through Wildlife Computers’ DAP software or by SMRU and all data were uploaded to

an Oracle database for additional processing and long-term archival.

Locations provided by the Argos System are calculated using Doppler shift measurements

from multiple SDR transmissions received during a single satellite overpass. The accuracy of

the location is classified with a Location Quality (LQ) of 3, 2, 1, 0, A, B or Z, with 3 expected to

have the smallest error, B the greatest, and Z considered an “invalid location” due to insuffi-

cient uplinks [33]. Although more sophisticated methods have since been developed for identi-

fying unlikely ARGOS locations based on movement rates and turning angles [34, 35], we

simply filtered out the worst quality locations (i.e., LQ = B and Z), and removed those few

remaining locations that placed the seal on land (as defined by the AMSR-E grid of the Bering

Sea used to define our study area). We plotted (Fig 2) all remaining locations using a Geo-

graphic Information System (ArcGIS Desktop, produced by ESRI, Redlands, CA, USA) to

visually identify and compare gross movement patterns among seals.

After being released, most seals remained in the ice-free waters of the Chukchi Sea for only

1 to 2 months before heading south through the Bering Strait with the advancing sea-ice. For

completeness and context we describe these Chukchi Sea movements in the results presented

below. Data from the Chukchi Sea were insufficient for RSF analysis however (few data points

over very narrow temporal window), so we restricted our RSF selection analysis to include

only those 17 seals (8 female and 9 male) that entered the Bering Sea (defined as south of 65˚

45’N) and remained there until their SDRs ceased transmitting (i.e., the battery failed or the

seal tag was shed (Table 1)).

Analysis and simulation of bearded seal movements

We used logistic regression to fit a RSF in a matched case-control approach [36]. For our

study, the observed seal locations were the “case,” and we obtained a matched sample from

available habitat as the “control”. Spatio-temporal autocorrelation tends to bias downward the

variances of estimated RSF parameters however, which in turn biases the analysis to infer too

many spurious relationships [37, 38]. Hence, we modified the use of logistic regression as an

RSF [28] by adding a Monte Carlo randomization to obtain correct variances [39]. In this sec-

tion, we describe the Monte Carlo randomization, which first required an analysis of move-

ments (step lengths and turning angles) of tagged seals using a generalized linear model.

Models of, and methods to analyze, animal movement are advancing rapidly [40–46]. Some

of these new approaches attempt (with varied levels of success) to incorporate habitat into fit-

ted movement models (e.g. [43, 47, 48]) or to relate movement to habitat [49]. However, our

goal was to simulate movement in the absence of environmental covariates that might other-

wise influence movement so that this simulated movement could be compared to real tracks as

matched case-controls for a RSF. Many of the models listed above are elegant and allow predic-

tions in space at unsampled times. However, they are computationally demanding and are

very difficult to use when analyzing many animals simultaneously. Our analytical approach is

statistically sound and pragmatic for our data set.

Animal tracks can be represented as sequential movement vectors, each characterized by

elapsed time, bearing, and length from which secondary components can be calculated (e.g.,

dividing length by elapsed-time yields average speed). Before simulating movements, we fit

several generalized linear models (GLMs) to estimate transition probability tables for direc-

tional bearings and distances moved from real observations (see S1 File for details). A corre-

lated random walk (CRW) model was developed using data from seals (case) that were moving

south to follow advancing sea ice during freeze-up. As such, there was also a southerly
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tendency in movement in the simulated locations (control). This tendency mimicked south-

erly movement of real seals such that controls remained a good proxy for available habitat as

the winter season progressed. The southerly tendency in the CRW model from which simula-

tions were produced, along with the constriction of the Bering Strait, effectively kept case-con-

trol locations in the Bering Sea.

The estimated movement parameters were used to simulate movements, creating locations

from a null model (control) that matched the time increments from location to location and

the sample size for each tagged seal, but with no habitat selection. Thus each real location for

each tracked seal had an exactly temporally matched case-control. This temporal matching is

somewhat less straightforward than one would intuitively expect because Argos error adds

measurement error to the distribution of swimming speeds and turning angles that we needed

for simulation. This contamination is increasingly serious as the simulation interval decreases,

which we effectively addressed via a series of transformations to control skewed variance in

the step length distribution attributable to this contamination (see S1 File for details).

We simulated 20 independent case-control tracks for each of the 17 seals (see Fig 3; e.g.,

simulated tracks) which served as case-controls for 20 independent RSFs that form the nucleus

of our Monte Carlo modification to the RSF. Although it would have been desirable to have

more than 20 simulated tracks for the Monte Carlo estimates and tests [39], the computational

time for each track was non-trivial. We used 20 tracks as the minimal number, based on the

original suggestion by Barnard [50] and later Manly [39].

Habitat covariates

We assigned habitat covariates to observed seal locations (case) and control locations from

remotely sensed data. For each observed and simulated track, we obtained the covariates

described in Table 2 at each location. We used the ETOPO2v2 Global Gridded database [51]

to compute the variables related to seafloor depth. Depth was taken directly from the raster cell

of an observed or simulated location. For d21kiso, we created an isobath of the 1000 m depths

using the contour() function R [52] and then computed the shortest distance from each loca-

tion to that isobath. We used the daily sea-ice raster images from the Advanced Microwave

Scanning Radiometer—Earth Observing System (AMSR-E) [53] database to compute the vari-

ables related to sea ice. The variable ice_conc was taken directly from the raster cell of an

observed or simulated location. We also included the quadratic form (i.e., ice_conc2) to allow

for non-linear relationships. Similar to the 1000 m depth contour, we created a contour line of

the 10% ice concentration to denote an ice edge. Although 10% concentration is a somewhat

arbitrary threshold, it is appropriate to use a concentration > 0% to account for seasonal vari-

ability in measurement error at low ice concentrations [54]. Any contour of length less than 50

km was eliminated, and we computed the shortest distance from each location to the nearest

of the remaining contours for the variable d2ice. Finally, we transformed the variables d2coast,

d2ice, d21kiso and depth_m with their square roots to linearize their relationships to the

response variable.

Resource selection via logistic regression

The locations of animal movements are correlated in both space and time. We estimated habi-

tat selection parameters from the observed and simulated tracks using logistic regression in

the form of a RSF, but we estimated standard errors via a Monte Carlo method. The logistic

regression models were fit with maximum likelihood using the glm() function in R [29]. Note

that we did not use a mixed model with a random effect for each seal. The simple logistic

regression model weights each observation equally, allowing seals with more observations to
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have proportionally more weight. A mixed model would weight each animal more equally.

While each approach has merits, we decided on the simple logistic regression. The glm()

Fig 3. The movement track of seal 53607 in black, overlaid on the 20 simulated tracks paired for that individual

(each simulation is a different color).

https://doi.org/10.1371/journal.pone.0192743.g003

Table 2. The variables used in the model and their descriptions.

Variable Description

d2coast Distance (km) from the location to the nearest coastline

depth_m Depth (m) of the seafloor at the location based on the ETOPO2v2 Global Gridded database

d21kiso Distance (km) from the location to the 1000 m depth isobar, estimated from the ETOPO2v2 Global

Gridded database

d2ice Distance (km) from the location to ice edge (defined as the daily AMSR-E 10% ice concentration

contour)

ice_conc The daily AMSR-E percent ice concentration at the location

sea_ice A binary variable (yes or no) indicating whether the location is in a field of sea-ice (based on the daily

AMSR-E data) or in open water

https://doi.org/10.1371/journal.pone.0192743.t002
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procedure that we used generally assumes independent observations, but our observations

were not independent so the estimated standard errors would be incorrect due to autocorrela-

tion. We obtained correct standard errors by Monte Carlo randomization, where we averaged

the regression coefficients and used the standard deviations of the regression coefficients over

the 20 Monte Carlo randomizations as our standard error terms. For the null hypothesis (i.e.,

regression coefficients are zero), we obtained the standard errors and P-values by assuming

the mean regression coefficients were distributed normally with the standard deviation

obtained from the 20 Monte Carlo fits of the logistic regression.

As traditional model selection techniques, such as AIC, are not available owing to the

Monte Carlo modification of our RSF, we used a stepwise model selection procedure based on

P-values to obtain a parsimonious model with all terms significant at α = 0.05. The initial

model had all eight single effect covariates, an interaction between sea_ice and sqrt(d2ice),

plus the interaction of sex with all other covariates and the sea_ice/sqrt(d2ice) interaction. We

then removed interaction terms that were least significant one at a time. After removing insig-

nificant interaction terms, we removed single effects that were least significant one at a time

(unless they were part of a significant interaction term; see Table 3). The final model was inter-

preted as a resource selection function (e.g., [28], p. 103), where the regression coefficients

indicated selection in the direction of the coefficient.

Results and discussion

Movements

Individual SDRs transmitted data for 4 to 253 days with a mean of 115 days (Table 1). Of the

two female bearded seals tagged in 2004, one remained close to the coast of inner Kotzebue

Sound and the other moved into the deeper waters of the Chukchi Sea (Fig 2B). Despite these

different habitats, they both exhibited similar patterns in the use of their surroundings. Each

seal tended to remain in a small area, presumably foraging, for a brief period (i.e., 3 to 18 days)

before moving to a new location, often more than 150 km away. Neither of these seals entered

the Bering Sea before their SDRs failed, and so they were not used in our habitat analysis.

In 2005, one female and four males (half of all males) headed north along the coast (Fig 2C

and 2D). Each focused their movements for multiple days/weeks near Point Hope, an area

known to be of high ocean productivity [55]. Two of these males continued farther north to

Table 3. These model factors and interactions were sequentially eliminated from the initial model at the given P-

value.

Model factor P-value

sex�ice_conc 0.3989

sex�sea_ice 0.3988

sex�sqrt(d2coast) 0.3964

sex�sqrt(d21kiso) 0.3911

sex�ice_conc2 0.3818

sqrt(d2coast) 0.3749

sex�depth_m 0.2960

sex�sea_ice�sqrt(d2ice) 0.3092

sex�sqrt(d2ice) 0.2252

depth_m 0.1354

sqrt(d21kiso) 0.1920

sex 0.0863

https://doi.org/10.1371/journal.pone.0192743.t003
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Wainwright before turning around and heading south to the Bering Strait. Two females

moved southeast into the shallow waters of inner Kotzebue Sound after being released (Fig

2C) and remained in shallow coastal waters until at least December when their SDRs failed.

Most individuals traveled into the southern Chukchi Sea, and moved with the advancing ice

into the Bering Sea. Four individuals (two males and two females) moved south of

St. Lawrence Island (Fig 2C and 2D). The remaining two females moved west into Russian

waters off the coast of the Gulf of Anadyr, towards the deeper waters of the northwest Bering

Sea.

In contrast to 2005, young bearded seals tagged in 2006 did not focus their movements on

any one location until they were south of Bering Strait (Fig 2E and 2F). All four females

remained relatively close to the coast even after entering the Bering Sea, including one female

that traveled as far north as Point Lay before returning southward. Although the males ranged

widely, they tended to focus on the northern Bering Strait before entering the Bering Sea.

Once in the Bering Sea, two males followed the advancing sea-ice south of St. Matthew Island,

while the third remained in the heavier ice just north of St. Lawrence Island.

Habitat selection analyses

The stepwise removal of effects, and the P-values for the removal, are presented in Table 3.

The sex of a seal, and every interaction term that included sex, were not significant. This is an

interesting result considering the observed differences in movement patterns and bearings

between the sexes. Our analysis examines habitat however, not location or movement. Though

it could be related to our small sample size, the lack of a significant sex-related effect in the

final model suggests that males and females in this very young age class respond to habitat var-

iables similarly, even if they move differently or are in different locations.

Depth is likely a critical habitat feature for bearded seals, which are predominantly benthic

feeders. Unfortunately, none of our observed or simulated tracks extended off of the Bering

Sea shelf for more than a few days, so we were unable to test for the effects of deeper water.

That the variable ‘depth_m’ was not a significant term in our analysis supports the assumption

that bearded seals are capable of exploiting the entire Bering Sea shelf [22].

By modeling the log of the ratios of observed versus simulated locations, we effectively cal-

culated the log odds of a tagged seal occupying a particular habitat versus a simulated seal,

which had no influence of habitat characteristics on its movements. For graphical purposes we

exponentiated model outputs to obtain the “odds of selection” [56]. An odds of selection > 1

indicates chosen habitat and an odds of selection < 1 indicates rejected habitat. The final

model (Table 4) suggested that a key habitat selection factor was distance to an ice edge (i.e.,

sqrt(d2ice)); seals chose to be close to an ice edge. The strength of the relationship, however,

depended on whether the seal was in open water (i.e., sea_ice = no) or within an ice field (i.e.,

sea_ice = yes). These young bearded seals did not select open water, but when in open water

Table 4. The terms and covariate estimates of the final habitat selection model. The estimates of logistic regression coefficients are on the logit scale and all terms are

significant at α = 0.05.

Factor Estimate Std_Err z_value Prob z

Intercept 0.455066 0.235548 1.9320 0.0617

sea_ice = no -0.501833 0.322640 -1.5554 0.1190

ice_conc 0.058692 0.010952 5.3592 < 0.0001

ice_conc2 -0.000370 0.000098 -3.7946 0.0003

sqrt(d2ice) -0.206333 0.021916 -9.4149 < 0.0001

sqrt(d2ice)�(sea_ice = no) 0.185093 0.036084 5.1296 < 0.0001

https://doi.org/10.1371/journal.pone.0192743.t004
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they chose locations closer to an ice edge (Fig 4). When in an ice field, however, their selection

for ice edge habitat was much stronger, and the relationship fell off more rapidly with distance

away from the edge (Fig 5).

The final model retained both the linear and quadratic forms of ice_conc (Table 4), and

indicated that habitat selection of young bearded seals peaked at about 80% ice concentration.

This may appear contradictory to a selection for ice edge habitat where concentration tends to

be low. Our model results, however, must be interpreted in a multiple regression context; a

model coefficient is the effect of the covariate with all other covariates in the model held con-

stant. Ice concentration had a positive effect indicating that, on average, for any distance, seals

tended to select this higher range of ice concentrations (Fig 5). Although our model predicts

that young bearded seals would strongly select locations that are both close to the ice edge and

in concentrations around 80%, the combination of these conditions are quite rare and nonex-

istent for simulated seal movements.

Our sea-ice habitat selection results are consistent with habitat associations found during

springtime aerial surveys of the Bering Sea [57–59]. A small survey of the waters near

St. Lawrence Island in March 2001 observed more bearded seals hauled out in 70–90% ice cov-

erage (compared with 0–70% and 90–100%) [58]. A larger survey of the central Bering Sea

south of St. Lawrence Island from mid-April to mid-June 2007 similarly examined the rela-

tionship between bearded seals and four classes of sea ice concentration: 0–25%, 25–50%, 50–

75%, and 75–100% [57]. Given that bearded seals were present, their numbers were greatest in

the 75–100% class. A still broader survey of the entire U.S. portion of the Bering Sea from

early-April to mid-May 2012 showed peak abundance of bearded seals in ice concentrations

between about 50% and 75% [59]. Taken together, these studies corroborate our model results

indicating that bearded seals choose moderate to high ice concentrations. It is noteworthy,

however, that the literature [24, 60] and maps of abundance based on the 2012 survey show

Fig 4. Graphical representation of model results for habitat locations in open water (i.e., sea_ice = no), as a

function of distance from the ice. Values for odds of selection> 1 indicate chosen habitat and values< 1 indicate

rejected habitat. The shading of the line represents the relative availability of the habitat to the tagged seal as sampled

by the simulation. Young bearded seals did not select open water, but when in open water they chose locations closer

to an ice edge (d2ice).

https://doi.org/10.1371/journal.pone.0192743.g004
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bearded seal densities highest towards the northern Bering Sea at the time of maximum sea-ice

extent [59]. One possibility is that young bearded seals select habitat differently than adults.

None of the analyses based on these aerial surveys accounted for the age of the seal. Yet, as is

true for all long-lived species, the majority of the population is composed of older individuals.

If there are age-related differences in habitat use those differences could be masked in analyses

based on aerial surveys that combine all age classes. In other words, our results, combined with

those from aerial surveys, suggest that in the Bering Sea from late fall to early spring, younger

bearded seals may tend to select ice edge habitat, while older seals may tend to select areas of

higher ice concentration farther from the edge. In the 2007 study, the sea-ice class with the sec-

ond highest numbers of seals was 0–25% [57]. This range includes our definition of an ice

edge (i.e., 10% concentration). If there are spatial differences in the springtime distributions of

bearded seals based on age, then it seems likely that most young bearded seals would occupy

this sea-ice class (i.e., at the southern edge of the sea-ice). If a bearded seal’s age could be esti-

mated (e.g., based on length) from the images used to survey seals in 2012 [59], a reanalysis of

those images could be used to investigate differences in bearded seal distribution based on age.

Presumably older bearded seals select locations with higher ice concentrations farther from

an ice edge for some fitness benefit. Perhaps the quality of the benthic foraging habitat [61],

the prey assemblages or the protection from killer whales (Orcinus orca) [62] are greater in the

northern Bering Sea than at the southern edge of the sea-ice. If so, the older animals may sim-

ply displace the younger ones from those more beneficial areas. Alternatively, the sea ice habi-

tat itself may be limiting these younger seals from these areas. Although bearded seals tend to

occupy sea-ice habitat with natural access to the water, observations indicate that bearded seals

are able to make breathing holes in thinner ice [5, 11, 12, 22, 25]. Fay [23] reported that adult

Fig 5. Graphical representation of model results for habitat within the sea-ice field (i.e., sea_ice = yes). Values for

odds of selection> 1 indicate chosen habitat and values< 1 indicate rejected habitat. Individual curves represent the

interactive effects of various distances to the ice edge (i.e., d2ice) and sea-ice concentration. The shading of each curve

represents the relative availability of the given habitat to the tagged seal as sampled by the simulation. Gray dashes

indicate no tagged seals occupied that habitat. In general, young bearded seals chose to be close to the edge and in

higher ice concentrations, but the combination of these conditions are quite rare. For all distances, habitat selection

peaked at about 80% ice concentration.

https://doi.org/10.1371/journal.pone.0192743.g005
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bearded seals can use their heads to break holes in ice that is up to 10 cm thick and can main-

tain those holes in still heavier ice. It is possible, therefore, that a younger bearded seal is inca-

pable of maintaining sufficient breathing holes or water access holes in areas occupied by older

seals and so select the ice margins, where the more broken nature of the ice provides reliable

spaces for breathing, hauling out, and quick escape back into the water.

There are many cases of young animals behaving differently than their older conspecifics.

Another ice-associated seal in Alaska, the ringed seal (Pusa hispida), occupied areas with high

(near 100%) ice concentrations farther from an ice edge than what was selected by younger

animals [63]. The authors hypothesized that adults chose areas with more stable sea-ice on

which to build their subnivean lairs for pupping and that younger ringed seals, unconstrained

by the need to maintain territories, moved to the Bering Sea ice edge where there are better

pelagic feeding opportunities.

Bearded seals do not create subnivean lairs and we were not investigating the pupping sea-

son, but previous research has reported differences in the diet of bearded seals based on age

[18, 64, 65]. Examinations of stomach contents [18] and tissue chemistries [64] suggest that

younger animals are more likely to consume shrimp and less likely to consume clams than

older bearded seals. Indeed, benthic surveys of the Bering Sea in mid- to late-summer 2010

suggest a generalized trend of higher densities of shrimp in the southern and eastern Bering

Sea than in the north [66]. It seems likely therefore, that prey (type and biomass) would also be

important habitat selection factors for bearded seals. Unfortunately, we did not include prey as

a covariate in our model because current information on the distributions and abundances of

various prey taxa are limited to ice-free periods and locations and so do not appropriately

reflect our study area. Until, benthic surveys of the Bering Sea can be conducted in areas with

sea ice perhaps sediment type could be used as a proxy for prey type in future models [67, 68].

Although bearded seals are a long-lived species, their population dynamics are likely to be

driven by juvenile survival. It has been estimated that only 28% of bearded seals in Alaska sur-

vive to age 3 [7]. If persistent, even small reductions in their year-to-year survival could have

significant impacts on their overall population abundance. The predicted loss of sea-ice habitat

resulting from a warming climate was a primary factor leading to the species listing as “threat-

ened” in U.S. waters, under the ESA [27]. It may therefore, appear fortunate that young

bearded seals choose ice edge habitat (that will always be available as long as there is any sea-

ice present). As the extent of sea-ice is reduced, however, the location of the ice edge will shift

northwards and, given the geography of the Bering Sea, the total area of ice edge habitat will be

greatly reduced until the ice edge recedes into the northern Chukchi Sea. These changes in the

distribution of sea-ice could require bearded seals to adapt to novel, and possibly suboptimal,

conditions and to exploit habitats to which they may not be well suited, potentially

compromising their resiliency.

Conclusion

As expected, shortly after being released in early autumn, most of the bearded seals in our

study moved south with the advancing sea-ice through the Bering Strait and into the Bering

Sea where they spent the winter and early spring. Our habitat-use model indicated that these

young seals selected locations near ice edges. This is in contrast to observations from aerial sur-

veys that showed bearded seals tended to occupy areas farther north and in heavier pack ice at

this time. We hypothesize that this discrepancy is the result of age-related behavioral differ-

ences between the young animals in our study and the predominantly adult seals in the sur-

veys. Ice concentration was also shown to be a statistically significant variable in our model.

All else being equal, areas of higher ice densities are selected for, up to about 80%
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concentration. The effects of sex or bathymetry were not statistically significant. The close

association of young bearded seals to the ice edge in the Bering Sea is important, given the

likely effects of climate warming on the extent of sea-ice and subsequent changes in ice edge

habitat.

Supporting information

S1 File. Supplementary information about the movement model.

(PDF)

Acknowledgments

This project was designed as a cooperative effort, combining the expertise of biologists’ at data

analysis, handling and tagging seals, and the knowledge of Kotzebue-area Alaska Natives

about the local distribution and habits of bearded seals and traditional hunting methods.

Many people and institutions were involved in this project and were critical to its success. In

particular, we would like to thank Willie Goodwin, Ross Schaeffer, John Goodwin, Chuck

Schaeffer, Rob Delong, Gay Sheffield, Cyrus Harris, Doc Harris, Grover Harris, Lee Harris,

Brenda Goodwin, Pearl Goodwin, Dan Savetilik, Tom Jones, Lloyd Lowry, the Alaska Depart-

ment of Fish and Game and the Selawik National Wildlife Refuge. This study was funded by

the Tribal Wildlife Grants Program of the U.S. Fish and Wildlife Service (https://www.fws.

gov/nativeamerican/grants.html; Grant no. U-4-IT awarded to AVW and KJF) and received

significant additional support from NOAA’s National Marine Fisheries Service. All work was

conducted in accordance with and under the authority of United States Marine Mammal Pro-

tection Act Scientific Research Permits 358–1585 and 358–1787. The project was reviewed and

approved by the State of Alaska Institutional Animal Care and Use Committee (IACUC) Per-

mit No. 06–16 in 2007–2009. All satellite telemetry and associated metadata are archived and

available through the Research Workspace DataONE member node at https://dx.doi.org/10.

24431/rw1k118 [69]. More detailed project information, along with maps and field photos pic-

tures can be found at: www.kotzebueira.org/environmental-projects/young-bearded-seal/

index.html

The findings and conclusions in the paper are those of the authors and do not necessarily

represent the views of the National Marine Fisheries Service. Reference to trade names does

not imply endorsements by the National Marine Fisheries Service, NOAA.

Author Contributions

Conceptualization: Kathryn J. Frost, Alex V. Whiting, John Goodwin.

Data curation: Michael F. Cameron, Peter L. Boveng.

Formal analysis: Michael F. Cameron, Jay M. Ver Hoef, Greg A. Breed.

Funding acquisition: Kathryn J. Frost, Alex V. Whiting, Peter L. Boveng.

Investigation: Michael F. Cameron, Kathryn J. Frost, Alex V. Whiting, John Goodwin, Peter

L. Boveng.

Methodology: Michael F. Cameron, Kathryn J. Frost, Jay M. Ver Hoef, Greg A. Breed, Alex V.

Whiting, John Goodwin, Peter L. Boveng.

Project administration: Michael F. Cameron, Kathryn J. Frost, Peter L. Boveng.

Resources: Alex V. Whiting, John Goodwin, Peter L. Boveng.

Habitat selection and seasonal movements of young bearded seals (Erignathus barbatus) in the Bering Sea

PLOS ONE | https://doi.org/10.1371/journal.pone.0192743 February 28, 2018 14 / 18

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0192743.s001
https://www.fws.gov/nativeamerican/grants.html
https://www.fws.gov/nativeamerican/grants.html
https://dx.doi.org/10.24431/rw1k118
https://dx.doi.org/10.24431/rw1k118
http://www.kotzebueira.org/environmental-projects/young-bearded-seal/index.html
http://www.kotzebueira.org/environmental-projects/young-bearded-seal/index.html
https://doi.org/10.1371/journal.pone.0192743


Software: Jay M. Ver Hoef, Greg A. Breed, Peter L. Boveng.

Supervision: Michael F. Cameron, Kathryn J. Frost, Peter L. Boveng.

Validation: Jay M. Ver Hoef, Greg A. Breed.

Visualization: Michael F. Cameron, Jay M. Ver Hoef.

Writing – original draft: Michael F. Cameron, Kathryn J. Frost, Jay M. Ver Hoef, Greg A.

Breed, Alex V. Whiting, John Goodwin, Peter L. Boveng.

Writing – review & editing: Michael F. Cameron, Kathryn J. Frost, Jay M. Ver Hoef, Greg A.

Breed, Alex V. Whiting, John Goodwin, Peter L. Boveng.

References
1. Frost KJ, Cameron MF, Simpkins M, Schaeffer C, Whiting A. Diving behavior, habitat use, and move-

ments of bearded seal (Erignathus barbatus) pups in Kotzebue Sound and Chukchi Sea. Proceedings

of the Sixteenth Biennial Conference on the Biology of Marine Mammals; San Diego, CA: Society for

Marine Mammalogy; 2005. p. 98–9.

2. Gjertz I, Kovacs KM, Lydersen C, WiigØ. Movements and diving of bearded seal (Erignathus barbatus)

mothers and pups during lactation and post-weaning. Polar Biology. 2000; 23(8):559–66. PubMed

PMID: ISI:000088707400007.

3. Krafft BA, Lydersen C, Kovacs KM, Gjertz I, Haug T. Diving behaviour of lactating bearded seals (Erig-

nathus barbatus) in the Svalbard area. Canadian Journal of Zoology. 2000; 78(8):1408–18. PubMed

PMID: 4779195.

4. Heptner LVG, Chapskii KK, Arsen’ev VA, Sokolov VT. Bearded seal. Erignathus barbatus (Erxleben,

1777). In: Heptner LVG, Naumov NP, Mead J, editors. Mammals of the Soviet Union Volume II, Part 3

—Pinnipeds and Toothed Whales, Pinnipedia and Odontoceti. 2, Part 3. Moscow, Russia: Vysshaya

Shkola Publishers; 1976. p. 166–217.

5. Nelson RR, Burns JJ, Frost KJ. The bearded seal (Erignathus barbatus). In: Burns JJ, editor. Marine

Mammal Species Accounts, Wildlife Technical Bulletin No 7. 7. Juneau, AK: Alaska Department of

Fish and Game; 1984. p. 1–6.

6. Fedoseev GA. Population structure, current status, and perspective for utilization of the ice-inhabiting

forms of pinnipeds in the northern part of the Pacific Ocean In: Yablokov AV, editor. Marine Mammals.

Moscow, Russia: Nauka; 1984. p. 130–46.

7. Burns JJ, Frost KJ. The natural history and ecology of the bearded seal, Erignathus barbatus. Environ-

mental Assessment of the Alaskan Continental Shelf Final Reports of Principal Investigators Volume 19

December 1983. 19. Juneau, AK: U.S. Department of Commerce, NOAA, and U.S. Department of the

Interior; 1983. p. 311–92.

8. Lydersen C, Kovacs KM. Behaviour and energetics of ice-breeding, North Atlantic phocid seals during

the lactation period. Marine Ecology Progress Series. 1999; 187:265–81. PubMed PMID: 4682634.

9. Burns JJ. Arctic marine mammals. In: Perrin WF, Wursig BG, Thewissen JGM, editors. Encyclopedia of

Marine Mammals. First ed. San Diego, CA: Academic Press; 2002. p. 39–45.

10. Feltz ET, Fay FH. Thermal requirements in vitro of epidermal cells from seals. Cryobiology. 1966; 3

(3):261–4. PMID: 5970349

11. Burns JJ. Bearded seal Erignatus barbatus Erxleben, 1777. In: Ridgway SH, Harrison RJ, editors.

Handbook of Marine Mammals Volume 2: Seals. New York, NY: Academic Press; 1981. p. 145–70.

12. Fedoseev GA. The ecology of the reproduction of seals on the northern part of the Sea of Okhotsk.

Izvestiya TINRO. 1965; 65:212–6.

13. Smith TG. Notes on the bearded seal, Erignathus barbatus, in the Canadian Arctic. Quebec, Canada:

Department of Fisheries and Oceans, Arctic Biological Station, 1981 0706–6457 Contract No.: 1042.

14. Kingsley MCS, Stirling I, Calvert W. The distribution and abundance of seals in the Canadian high Arc-

tic, 1980–82. Canadian Journal of Fisheries and Aquatic Sciences. 1985; 42(6):1189–210. PubMed

PMID: 979375.

15. Burns JJ, Harbo SJ. An aerial census of spotted seal, Phoca vitulina largha, and walruses, Odobenus

rosmarus, in the ice front of Bering Sea. Environmental Assessment of the Alaskan Continental Shelf

Quarterly Reports of Principal Investigators April-June 1977 Volume 1. 1. Boulder, CO: U.S. Depart-

ment of Commerce, NOAA and the U.S. Department of Interior, Bureau of Land Management; 1977. p.

58–132.

Habitat selection and seasonal movements of young bearded seals (Erignathus barbatus) in the Bering Sea

PLOS ONE | https://doi.org/10.1371/journal.pone.0192743 February 28, 2018 15 / 18

http://www.ncbi.nlm.nih.gov/pubmed/5970349
https://doi.org/10.1371/journal.pone.0192743


16. Finley KJ, Evans CR. Summer diet of the bearded seal (Erignathus barbatus) in the Canadian High Arc-

tic. Arctic. 1983; 36(1):82–9. PubMed PMID: 514885.

17. Antonelis GA, Melin SR, Bukhtiyarov YA. Early spring feeding habits of bearded seals (Erignathus bar-

batus) in the Central Bering Sea, 1981. Arctic. 1994; 47(1):74–9. PubMed PMID: ISI:

A1994NF03600009.

18. Lowry LF, Frost KJ, Burns JJ. Feeding of bearded seals in the Bering and Chukchi Seas and trophic

interaction with Pacific walruses. Arctic. 1980; 33(2):330–42.

19. Kovacs KM. Bearded seal Erignathus barbatus. In: Perrin WF, Würsig B, Thewissen JGM, editors.
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